
1

Jason Yau

Professor Hensley

ENC 1102

26 July 2023

Review of Understanding Collaborative Software Development: An

Interview Study

For my semester-long paper, I’d like to research how communication and

collaboration in software development are needed to facilitate smooth development. I’d

like to do a review of one scholarly article relating to this topic by Kattiana Constantino

et al., who are affiliated with the Federal University of Minas Gerais in Brazil and/or

Carnegie Mellon University in the United States and have a background in Computer

Science. The writer also agrees that collaboration is important, particularly in fork-based

software development, where users interested in contributing create a copy of the

original source code, modify it, and request for the project maintainer to review and

integrate the modifications to the main code base, and seeks to understand exactly why

and how the collaboration happens in an interview-based study.

 The article first describes some basic terminology, such as open-source

software (OSS), where programmers develop software and post the source code in

public for free, and GitHub, the most popular website where most open-source code is

hosted. Then, the article writes about previous similar studies, such as a study by

Gousios et al., who investigated how to keep collaborators of a software project

motivated by reducing response times, better documentation, higher quality code, etc.,

and another study by Marlow et al., who observed how developers use GitHub’s social

features to get an understanding of the level of communication in a project and then

reflect on the project’s success (2). Overall, the introduction was done well and ensured

that the reader understood the programming lingo and prior context of their study. The

writers then propose three research questions, which deal with the motivations,

methods, and challenges of collaboration in software projects, and write a concise

explanation of why they want to further investigate the questions (3). Then, they write

how they conducted the interview: they found twelve Portuguese OSS contributors on

GitHub with over 500 commits. The interviewees could have been selected better; the

writers targeted only the top collaborators on GitHub who spoke Portuguese, and the

sample size was also very small; only 12 of the 80 contributors responded to the writers’

email, so the sample was not very general to the entire population of software

engineers.

By the end of the interview, they concluded that the interviewees preferred to

work collaboratively for knowledge sharing, increased productivity, and fewer software

2

bugs (4-5). They found that the main types of contributions were developing features,

code review, issue solving or reporting, and writing or translating documentation, and

the main mediums of communication were GitHub Issues and Pull Requests (a forum

for GitHub repositories) and Email (5–6). Additionally, they found some challenges of

collaborative software development to be challenges of effectively managing

collaborators, helping newcomers, inconsistent documentation, lack or loss of

contributors, and no compliance with the project guidelines (7). Their conclusion was

done very well, as each of the three research questions was specifically and clearly

answered, and they provided frequency tables on the number of interviewees who

answered a particular way, which concisely summarizes their findings and gives the

reader a better overall experience.

 Overall, the article conducted their research very well, and their findings mostly

reaffirm my argument that collaboration is needed in software development and has

vast benefits if communication is done well, as it provides interviewee testimony in a

concise manner. The intended audience is likely college students and/or software

engineers with less experience in the industry. However, I felt that there were some

missing pieces; for example, the writers could have tried to interview collaborators in

closed-source projects, where the source code is private and usually for a private for-

profit company, and have included the type of projects the interviewees worked on (e.g.,

websites, games, mobile apps, server-side), which would give the reader a better

understanding on how each sector of software development use collaboration.

Works Cited

Constantino, Kattiana, et al. Understanding Collaborative Software Development: An

Interview Study. Carnegie Mellon University, 2020,

https://www.cs.cmu.edu/~ckaestne/pdf/icgse20.pdf.

https://www.cs.cmu.edu/~ckaestne/pdf/icgse20.pdf

3

Jason Yau

Professor Hensley

ENC 1102

26 July 2023

Plan to Study the Importance of Communication in Software Development

With the rise of remote work, especially in the field of software development, it is

a common misconception that programming requires little collaboration, and much is

done in isolation. Software has become increasingly complex and larger throughout the

years, and it would be infeasible to code with little communication; Google’s codebase

consists of approximately two billion lines as of 2016 (Potvin and Levenberg). As a

Computer Science (CS) major interested in software engineering, I would like to explore

the importance and effects of communication in software development further by

proposing two research questions. What are the methods of communication in software

engineering? For this question, I would like to see what tools, development practices,

and open-source code programmers use in their jobs and personal hobby projects.

What are the effects of communication in software engineering? With this question, I

would like to identify the most common benefits reported by programmers when using

best communication practices and see if any negative effects are reported.

To answer the proposed research questions, my plan is to conduct interviews

and surveys. I believe this will be the easiest method to gather the most data regarding

my research questions. I would most likely choose college students with job experience

or who regularly create personal projects. This will be the easiest and most available

demographic to interview or survey; I can post a survey link on the University of Central

Florida’s (UCF) CS Discord server and other UCF CS clubs’ Discord servers, such as

Knight Hacks. I could also interview students in collegiate hackathons, or events where

the goal is to create functional real-world software with a team or individually, at college

campuses such as UCF, Georgia Tech, FIU, MIT, etc., throughout the year. According

to Warner and Guo, in 2016, collegiate hackathons sponsored by Major League

Hacking had over 65,000 students across 200 events, so interviewing at a hackathon

would be ideal as there is a large conglomerate of collaborative computer science

students. I would try to interview as many students as possible, as they would give the

most genuine answers; however, it may be challenging and time-consuming to interview

a large body of students, so I will likely mostly have survey responses with some

interview responses. This research plan is modeled similarly to the study from

Constantino, Kattiana, et al., who also decided to interview a select group of

collaborative software engineers to obtain data to understand exactly why and how

collaboration happens in fork-based development, where users interested in

4

contributing will create a copy of the original source code, modify it, and request for the

project maintainer to review and integrate the modifications to the main code base.

Additionally, I have compiled a list of questions to ask both interviewees and

survey participants. My first question would be: "Do you have job experience in the field

of software engineering or have developed a software project? Please describe." This

question is just to gauge if they qualify for the interview or survey and to get some

context on exactly what they do. The second question would be: "What tools and/or

practices do you use in the process of development and testing? How do they relate to

communication between programmers?" This question would attempt to answer the first

research question on how programmers use communication. With this question, I would

create a table sorted by the frequency of tools and practices that relate to

communication reported by the respondents to better organize the data. This question is

similar to the study by Theunissen, Theo, et al., who found that the tool stack, or the

"set of tools to produce a software product," leads to better communication and

comprehension (11). For the third question, I would first provide the definition of open-

source software (OSS), where programmers develop software and post the source code

in public for free, then ask: "What open-source projects have you used in the past six

months?" I would ask this question since OSS is a great example of communication as

it allows programmers to view, modify, update, and distribute collaboratively to create a

product, and OSS is often dependent on one another to function. I would then create a

frequency table like the one in the second question. My fourth question would be: "How

do you think these tools, practices, and open-source software have affected your teams’

productivity?" This question would attempt to answer the second research question on

the effects of communication on software engineers. This question is similar to the study

by Zhou et al., who found that there are inefficiencies in collaborative fork-based

development, such as "lost contributions, rejected pull requests, redundant

development, and fragmented communities." (10) Since this question is more open-

ended, I would try my best to summarize both the most common positive and negative

effects of communication and determine if one side outweighs the other. For the fifth

and final question, I would ask: "Do you prefer creating large software projects

individually or collectively? Why?" This would be a simpler type of question where

participants could give a quick answer. Since there are only two possible answers, I

would create a pie chart for preference for individual versus group, which would create a

very clear and concise visualization of the data.

Afterwards, I would write a report of all my findings. Under the headings for each

research question, I would summarize the common responses to the interview

questions that pertain to the respective research question and include any visual charts

I created. Then, I would conclude whether my proposed argument that communication

and collaboration are needed in software engineering was correct or not based on my

findings.

5

Works Cited

Potvin, Rachel, and Josh Levenberg. “Why Google Stores Billions of Lines of Code in a

Single Repository.” ACM, 1 July 2016,

https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-

lines-of-code-in-a-single-repository/fulltext.

Warner, Jeremy, and Philip J. Guo. “Student Perceptions of College Hackathons”,

University of San Diego, 2017, https://pg.ucsd.edu/publications/student-

perceptions-of-college-hackathons_ICER-2017.pdf.

Working Bibliography

Zhou, Shuru, et al. “What the Fork: A Study of Inefficient and Efficient Forking Practices

in Social Coding”, ACM, 2019,

https://dl.acm.org/doi/pdf/10.1145/3338906.3338918.

This study found that there are inefficiencies in collaborative fork-based development,

such as: “lost contributions, rejected pull requests, redundant development, and

fragmented communities.

Theunissen, Theo, et al. “In Continuous Software Development, Tools Are the Message

for Documentation”, Utrecht University, 2021,

https://dspace.library.uu.nl/bitstream/handle/1874/417159/103679.pdf.

This study found that the tool stack, or the “set of tools to produce a software product,”

leads to a better communication and comprehension.

https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
https://pg.ucsd.edu/publications/student-perceptions-of-college-hackathons_ICER-2017.pdf
https://pg.ucsd.edu/publications/student-perceptions-of-college-hackathons_ICER-2017.pdf
https://dl.acm.org/doi/pdf/10.1145/3338906.3338918
https://dspace.library.uu.nl/bitstream/handle/1874/417159/103679.pdf

6

Constantino, Kattiana, et al. Understanding Collaborative Software Development: An

Interview Study. Carnegie Mellon University, 2020,

https://www.cs.cmu.edu/~ckaestne/pdf/icgse20.pdf.

My research plan in conducting interviews on a group of collaborative software

engineers is modeled after this study.

https://www.cs.cmu.edu/~ckaestne/pdf/icgse20.pdf

